热门搜索:

济南上明能源科技有限公司是专业从事光伏组件厂家,太阳能电池板,半片光伏组件,太阳能发电,光伏发电,离网光伏系统,家用光伏系统,太阳能水泵系统及太阳能路灯工程等项目的开发、投资、设计、建设和运维工作的高新技术企业。欢迎来电咨询!

    鹤岗光伏组件 濮阳光伏发电
    • 鹤岗光伏组件 濮阳光伏发电
    • 鹤岗光伏组件 濮阳光伏发电
    • 鹤岗光伏组件 濮阳光伏发电

    鹤岗光伏组件 濮阳光伏发电

    更新时间:2020-10-16   浏览数:21
    所属行业:太阳能 光伏产品 太阳能发电系统
    发货地址:山东省济南天桥区  
    产品规格:
    产品数量:9999.00个
    包装说明:
    单 价:1.40 元/个
    大功率(W)280-410W 大功率电压(Vmp/A)30-40V 大功率电流(Imp/A)8.9-9.9A 开路电压(Voc/A)38-50V 短路电流(Isc/A)9.9-10.4 组件效率(%)17.5-21
    济南上明能源科技有限公司公司目前主营分布式光伏电站项目的EPC 总承包,即太阳能光伏电站的勘察、设计、采购、施工等综合业务。并且公司已经投资持有部分优质的光伏电站。
    济南上明能源科技有限公司与晶科电力有限公司,新奥集团, 中民新能投资有限公司等知名企业均已有大型已建成的合作项目。
    一、光伏电站简介与收益模式
    并网光伏电站可利用符合条件的闲置地面或厂房屋顶等闲置空
    间来建设光伏发电项目,并网接入方式按照当地电力公司设计方案
    实施。
    并网光伏电站可分为地面集中式光伏电站、屋顶分布式光伏电
    站和微型光伏系统等。地面集中式光伏电站一般利用荒山、沼泽、
    滩涂、工业废弃用地等未利用土地,经国家相关单位批准建设的大
    型地面集中式光伏电站项目;屋顶分布式光伏电站一般可利用大型
    厂房或建筑物的屋顶可利用面积,来建设分布式光伏发电项目;微
    型光伏系统一般指单位或个人利用自己有限的闲置屋顶或其他可利
    用空间,建设微型(一般在50kW 以下)光伏离网或并网系统。
    以下计算100KW 光伏收益:
    光伏倾角按照山东地区20°倾角计算。(实际收益以当地实际
    情况及政策为准)
    具体收益按照以下自主投资模式计算:
    1、自发自用,余电上网模式(自发自用80%,余电上网
    20%);
    注:水泥面屋顶按照20 度角计算约10000 ㎡/MW.
    济南上明能源科技有限公司0.1MW 光伏项目收益分析
    4
    二、收益简表
    自发自用80%余电上网20%模式:
    项目容量(MW) 0.1
    项目总投资(万元) 35
    首年
    首年发电量(万kWh) 12.25
    首年电价收益(万元) 8.80
    首年总收益(万元) 8.80
    年均
    年均发电量(万kWh) 10.96
    年均电价收益(万元) 7.88
    年均总收益(万元) 7.88
    总发电量
    25 年总发电量(万kWh) 273.91
    25 年总电价收益(万元) 196.94
    25 年总收益(万元) 196.94
    济南上明能源科技有限公司0.1MW 光伏项目收益分析
    5
    三、自发自用余电上网模式
    100KW 收益分析:
    项目概述
    安装容量100KW
    光伏组件倾角倾角20°
    安装区域约1000 ㎡
    25 年总收益
    按照自用电比例80%,上网比例20%计算,25
    年总收益为295.43 万元
    预计安装容量约100KW,由下表3-1 可以看出,光伏电站首年
    实际发电量约为12.25 万kWh,按照白天自用电0.8 元/kWh 计算,
    首年电费收益约为8.8 万元。
    此外,在环境效益上,光伏电站首年可节约煤炭约36.74 吨,相当
    于二氧化碳减排约96.25 吨,二氧化硫减排约2.2 吨,一氧化碳减
    排约0.83 吨,氮氧化物减排约1.32 吨,烟尘减排约0.4 吨。还可
    产生一定的CDM 指标收入。
    按照此收益计算,投资约35 万元,预计4 年左右可收回成本,
    电站寿命一般在25 年以上,维护方式简单,维护费用低,可靠性
    高,可持续产生利润。
    鹤岗光伏组件
    工程施工
    光伏组件安装
    (1)光伏组件支架安装
    光伏组件支架采用光伏组件快速安装系统(以下简称支架系统),安装前对场地进行复核,以确定实际支架角度,支架系统拼装前,应检查所有部件是否完整,是否符合规范要求,所有证明材料齐全,支架组装后,支架系统应当稳定牢固,并检查安装角度是否达到要求。
    (2)光伏组件安装
    安装光伏组件前,应根据组件参数对每个太阳光伏组件进行检查测试,其参数值应符合产品出厂指标。一般测试项目有:开路电压、短路电流。应挑选工作参数接近的组件在同一子方阵内。应挑选额定工作电流相等或相接近的组件进行串连。安装太阳光伏组件时,应轻拿轻放,防止硬物刮伤和撞击表面玻璃及背板。组件在基架上的安装位置及接线盒排列方式应符合施工设计规定。
    (3)光伏组件串接线
    光伏组件连接时,确保独立开关处于关闭状态。连接导线不应使接线盒端子受机械应力,连接牢固,极性正确。电缆及馈线应采用整段线料,不得有中间接头,导线应留有适当余量,布线方式和导线规格应符合设计图纸的规定。所有接线螺丝均应拧紧,并应按施工图检查核对布线是否正确。电源馈线连接后,应将接头处电缆牢靠固定。组件接线盒出口处的连接线应向下弯曲,防止雨水流入接线盒。方阵的输出端应有明显的极性标志和子方阵的编号标志。
    逆变器设备安装方法
    本项目采用的逆变器固定在逆变器室内钢结构基础上,此基础在逆变器综合配电室的设计图上有详细的说明。同时确保直流和交流导线分开。由于器内置有高敏感性电气设备,搬运逆变器应非常小心。使用起吊工具将逆变器固定到钢结构基础上的正确位置。固定位置必须准确。
    线槽桥架施工方法
    使用吊车或人工将线槽运到屋顶。
    先期进行相关项目检查:型号规格是否符合设计要求;镀层是否完好;外形是否无扭曲、变形;是否有合格证。根据本工程的实际情况,桥架在屋顶面直接敷设,
    (1) 线槽、桥架的安装工艺流程:
    弹线定位→安装支架及吊件→线槽安装
    (2) 施工方法和质量要求:
    ① 安装之前弹线定位,根据设计要求及施工规范的要求弹出中心线;
    ② 加强线槽的进场检验工作,线槽要平整,无扭曲变形,内壁刺,镀锌均匀,各种附件齐全;
    ③ 线槽安装时,线槽的接口平整,接缝处严密平直。槽盖装上后平整,无翘角,出线口位置正确,并做好整体接地;
    ④ 所有支架托臂保持水平,同一标高的托臂上下偏差不得超过2mm,层与层间隔300mm;
    (3) 质量保证措施:
    ① 安装前,检查桥架有无变形现象,镀锌层有无脱落。
    ② 桥架需要切割时,切口要正,并用平锉将毛刺、锐边打磨光滑。
    ③ 铺设桥架时,接头要对正,连接螺栓应由内向外穿,桥架连接牢固,横平竖直,水平方向误差全长不超过5mm,垂直度不超过3mm。
    ④ 当多层桥架标高同时改变时,桥架层间距离应保持不变,桥架与桥架应保持平行。
    ⑤ 桥架安装,应先安装主桥架,再安装分支架,分支架连接牢固。
    ⑥ 组装电缆竖井时,竖井垂直误差≤2/1000H(H 为竖井高度),支架横撑水平误差≤2/1000L(L 为竖井宽度),竖井对角线≤5/1000L(L为竖井对角线长度)
    4) 电缆及导线施工方法
    按照电缆、导线的正确方向敷设电缆、放置导线。电缆及导线在进入建筑物时要作防水处理。所有电缆、导线的两端均要编号以供辨认。确保所有电缆、导线的两端绝缘,避免发生断路。敷线完成后,线槽上要加盖以保护电缆、导线。
    (1) 电缆敷设工艺流程
    准备工作→电缆桥架敷设→电缆敷设(水平、垂直)→挂标志牌
    (2) 电缆敷设方法和质量要求
    ① 施工前对电缆做详细的检查:规格、型号、截面、电压等级均应符合设计要求,外观无扭曲、坏损;
    ② 电缆敷设前按有关要求做绝缘摇测和耐压实验;
    ③ 采用机械放电缆时,将机械选好适当位置安装,对于不便于用机械的地方采用人工放,使用滚轮;
    ④ 放电缆时用无线电对讲机做定向联络;
    ⑤ 在桥架上敷设电缆时,根据实际情况,事先将电缆的排列用图表画出,避免电缆交叉混乱。
    ⑥ 按设计原理图和相关要求,采用配套线缆将设备连接好。
    ⑦ 线缆绑扎整齐、有明显编号、标识牢靠。
    ⑧ 通电前确认设备连线准确无误,特别注意电源线与信号线不能错接。
    ⑨ 按设备技术说明书额定电压要求接入相应等级的电压。
    ⑩ 电源引入线端标识清晰牢靠。
    (3) 试运行
    ① 设备安装完成后按建筑智能化子分部、分项工程规范进行工序报验。
    ② 安装调试符合设计要求后进行试运行。
    ③ 做试运行和试运行过程中对出现问题的处理/解决方法的记录。
    鹤岗光伏组件
    影响光伏组件出力的几个因素
    1热斑效应
    一串联支路中被遮蔽的太阳电池组件,将被当作负载消耗其他有光照的太阳电池组件所产生的能量,被遮蔽的太阳电池组件此时会发热,这就是热斑效应。
    这种效应能严重的破坏太阳电池。有光照的太阳电池所产生的部分能量,都可能被遮蔽的电池所消耗。而造成热斑效应的,可能仅仅是一块鸟粪。
    为了防止太阳电池由于热斑效应而遭受破坏,在太阳电池组件的正负极间并联一个旁路二极管,以避免光照组件所产生的能量被受遮蔽的组件所消耗。当热斑效应严重时,旁路二极管可能会被击穿,令组件烧毁,如下图(图片来自于TUV-Rheinland)。
    (想了解更多关于热斑问题的内容,可在平台回复“102”,查看《如何正确认识“热斑效应”》)
    2PID效应
    电位诱发衰减效应(PID,PotentialInduced Degradation)是电池组件长期在高电压作用下,使玻璃、封装材料之间存在漏电流,大量电荷狙击在电池片表面,使得电池表面的钝化效果恶化,导致组件性能低于设计标准。PID现象严重时,会引起一块组件功率衰减50%以上,从而影响整个组串的功率输出。高温、高湿、高盐碱的沿海地区易发生PID现象。
    造成组件PID现象的原因主要有以下三个方面:
    1)系统设计原因:光伏电站的防雷接地是通过将方阵边缘的组件边框接地实现的,这就造成在单个组件和边框之间形成偏压,组件所处偏压越高则发生PID现象越严重。对于P型晶硅组件,通过有变压器的逆变器负极接地,消除组件边框相对于电池片的正向偏压会有效的预防PID现象的发生,但逆变器负极接地会增加相应的系统建设成本;
    2)光伏组件原因:高温、高湿的外界环境使得电池片和接地边框之间形成漏电流,封装材料、背板、玻璃和边框之间形成了漏电流通道。通过使用改变绝缘胶膜乙烯醋酸乙烯酯(EVA)是实现组件抗PID的方式,在使用不同EVA封装胶膜条件下,组件的抗PID性能会存在差异。另外,光伏组件中的玻璃主要为钙钠玻璃,玻璃对光伏组件的PID现象的影响至今尚不明确;
    3)电池片原因:电池片方块电阻的均匀性、减反射层的厚度和折射率等对PID性能都有着不同的影响。
    上述引起PID现象的三方面中,由在光伏系统中的组件边框与组件内部的电势差而引起的组件PID现象被行业所公认,但在组件和电池片两个方面组件产生PID现象的机理尚不明确,相应的进一步提升组件的抗PID性能的措施仍不清楚。
    3电池片隐裂
    隐裂是电池片的缺陷。由于晶体结构的自身特性,晶硅电池片十分容易发生破裂。晶体硅组件生产的工艺流程长,许多环节都可能造成电池片隐裂(据西安交大杨宏老师的资料,仅电池生产阶段就有约200种原因)。隐裂产生的本质原因,可归纳为在硅片上产生了机械应力或热应力。
    近几年,晶硅组件厂家为了降低成本,晶硅电池片一直向越来越薄的方向发展,从而降低了电池片防止机械破坏的能力。
    2011年,德国ISFH公布了他们的研究结果:根据电池片隐裂的形状,可分为5类:树状裂纹、综合型裂纹、斜裂纹、平行于主栅线、垂直于栅线和贯穿整个电池片的裂纹。
    隐裂,对电池片功能造成的影响是不一样的。对电池片功能影响的,是平行于主栅线的隐裂(第4类)。根据研究结果,50%的失效片来自于平行于主栅线的隐裂。45°倾斜裂纹(第3类)的效率损失是平行于主栅线损失的1/4。垂直于主栅线的裂纹(第5类)几乎不影响细栅线,因此造成电池片失效的面积几乎为零。
    有研究结果显示,组件中某单个电池片的失效面积在8%以内时,对组件的功率影响不大,组件中2/3的斜条纹对组件的功率稳定没有影响。
    鹤岗光伏组件
    生产流程
    步单片焊接:将电池片焊接互联条(涂锡铜带),为电池片的串联做准备.
    第二步串联焊接:将电池片按照一定数量进行串联。
    第三步叠层:将电池串继续进行电路连接,同时用玻璃、EVA胶膜、TPT背板将电池片保护起来。
    第四步层压: 将电池片和玻璃、EVA胶膜、TPT背板在一定的温度、压力和真空条件下粘结融合在一起。
    第五步装框: 用铝边框保护玻璃,同时便于安装。
    第六步清洗 : 保证组件外观。
    第七步电性能测试:测试组件的绝缘性能和发电功率
    后包装入库。
    制造特点
    (1)作为光伏行业的终端产品,与市场结合紧密,产品将直接面向客户,要求有很强的市场应变机制;
    (2)应用原材料品种繁多,选用不同材料将会直接影响到组件的相关性能;
    (3)产品更新换代较快,对产品的设计开发能力要求较高;
    如何区分光伏组件优劣
    光伏组件的好坏决定了光伏电站的质量优劣,也是光伏电站能否25年有效稳定运行的决定性条件。
    常见的晶硅光伏组件是将钢化玻璃、EVA、电池片、EVA、背板按照从下到上的顺序经过层压的方式封装在一起,背板与钢化玻璃将电池片和EVA封装在内部,通过铝边框和硅胶密封边缘保护。因此评估光伏组件好坏的标准主要由其封装材料的质量来区别。
    -/gbabfha/-
    山东上明晶硅新能源有限公司坐落于“一城山色半城湖”的泉城济南,毗邻济南机场,连接济青高速,地理位置优越,交利。经过光伏行业多年的洗礼,公司已初步实现集团化和规模化,产品涉及太阳能光伏组件生产、研发、销售,太阳能光伏控制器、逆变器、光伏材料销售,机电安装工程,进出口等业务,主要应用于光伏电站、新能源地产、城市亮化照明、偏远地区供电等领域,是目前山东省可实现半片组件自动化量产的高新技术企业。
    http://www.gxjmbj.com